Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.12.06.22283000

ABSTRACT

The Omicron era of the COVID-19 pandemic commenced at the beginning of 2022 and whilst it started with primarily BA.1, it was latter dominated by BA.2 and related sub-lineages. Over the course of 2022, we monitored the potency and breadth of antibody neutralization responses to many emerging variants at two levels: (i) we tracked over 400,000 U.S. plasma donors over time through various vaccine booster roll outs and Omicron waves using antibody pools. (ii) we mapped the antibody response at the individual level using blood from strigently curated vaccine and convalescent cohorts. In pooled antibody samples, we observed the maturation of neutralization breadth to Omicron variants over time through continuing vaccine and infection waves. Importantly, in many cases we observed increased antibody breadth to variants that were yet to be in circulation. Resolution of viral neutralisation at the cohort level supported equivalent coverage across prior and emerging variants with emerging isolates BQ.1.1, XBB.1 and BR.2.1 the most evasive. Further, these emerging variants were resistant to Evusheld, whilst neutralization resistance to Sotrovimab was restricted to BQ.1.1 and further supported by lack of Spike glycoprotein binding to this variant. An outgrowth advantage through better utilization of TMPRSS2 was observed across BQ lineages and not those derived from BA.2.75. We conclude at this current point in time that variants derived from BQ lineages can evade antibodies at levels equivalent to their most evasive BA.2.75 counterparts but sustain an entry phenotype that would promote an additional outgrowth advantage.


Subject(s)
COVID-19
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1179181.v1

ABSTRACT

Current vaccines against SARS-CoV-2 substantially reduce mortality, but protection against infection is less effective. Enhancing immunity in the respiratory tract, via mucosal vaccination, may provide protection against infection and minimise viral spread. We tested a novel subunit vaccine in mice, consisting of SARS-CoV-2 Spike protein with a TLR2-stimulating adjuvant, delivered to mice parenterally or mucosally. Both routes of vaccination induced substantial neutralising antibody (nAb) titres, however, mucosal vaccination uniquely generated anti-Spike IgA, increased nAb in the serum and airways, and increased lung CD4 + T-cell responses. TLR2 is expressed by respiratory epithelia and immune cells. Using TLR2 deficient chimeric mice, we determined that TLR2 expression in either compartment facilitated early innate responses to mucosal vaccination. By contrast, TLR2 on hematopoietic cells was essential for optimal lung-localised, antigen-specific responses. In a K18-hACE2 mice, vaccination provided complete protection against disease and sterilising lung immunity against SARS-CoV-2. These data support mucosal vaccination as a strategy to improve protection in the respiratory tract against SARS-CoV-2 and other respiratory viruses.

3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.13.21267748

ABSTRACT

In the studies to date, the estimated fold-drop in neutralisation titre against Omicron ranges from 2- to over 20-fold depending on the study and serum tested. Collating data from the se results in a combined estimate of the fold drop in neutralisation titre against Omicron of 9.7 (95%CI 5.5-17.1). We use our previously established model to predict that six months after primary immunisation with an mRNA vaccine, efficacy for Omicron is estimated to have waned to around 40% against symptomatic and 80% against severe disease. A booster dose with an existing mRNA vaccine (even though it targets the ancestral spike) has the potential to raise efficacy to 86.2% (95% CI: 75.4-92.9) (symptomatic) and 98.2% (95% CI 90.9-99.7) (severe) against Omicron.

4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.11.21261876

ABSTRACT

A number of SARS-CoV-2 variants of concern (VOC) have been identified that partially escape serum neutralisation activity elicited by current vaccines. Recent studies have also shown that vaccines demonstrate reduced protection against symptomatic infection with SARS-CoV-2 variants. Here we integrate published data on in vitro neutralisation and clinical protection to understand and predict vaccine efficacy against existing SARS-CoV-2 variants. We find that neutralising activity against the ancestral SARS-CoV-2 is highly predictive of neutralisation of the VOC, with all vaccines showing a similar drop in neutralisation to the variants. Neutralisation levels remain strongly correlated with protection from infection with SARS-CoV-2 VOC (r=0.81, p=0.0005). We apply an existing model relating in vitro neutralisation to protection (parameterised on data from ancestral virus infection) and find this remains predictive of vaccine efficacy against VOC once drops in neutralisation to the VOC are taken into account. Modelling of predicted vaccine efficacy against variants over time suggests that protection against symptomatic infection may drop below 50% within the first year after vaccination for some current vaccines. Boosting of previously infected individuals with existing vaccines (which target ancestral virus) has been shown to significantly increase neutralising antibodies. Our modelling suggests that booster vaccination should enable high levels of immunity that prevent severe infection outcomes with the current SARS-CoV-2 VOC, at least in the medium term.

SELECTION OF CITATIONS
SEARCH DETAIL